
What's new in katana
VERSION 2.0v1

Katana™ What's New In Katana. Copyright © 2015 The Foundry Visionmongers Ltd. All Rights Reserved. Use of this document and the
Katana software is subject to an End User License Agreement (the "EULA"), the terms of which are incorporated herein by reference. This
document and the Katana software may be used or copied only in accordance with the terms of the EULA. This document, the Katana
software and all intellectual property rights relating thereto are and shall remain the sole property of The Foundry Visionmongers Ltd.
("The Foundry") and/or The Foundry's licensors.

The EULA can be read in the Katana User Guide.

The Foundry assumes no responsibility or liability for any errors or inaccuracies that may appear in this document and this document is
subject to change without notice. The content of this document is furnished for informational use only.

Except as permitted by the EULA, no part of this document may be reproduced, stored in a retrieval system or transmitted, in any form
or by any means, electronic, mechanical, recording or otherwise, without the prior written permission of The Foundry. To the extent that
the EULA authorizes the making of copies of this What's New In Katana, such copies shall be reproduced with all copyright, trademark
and other proprietary rights notices included herein. The EULA expressly prohibits any action that could adversely affect the property
rights of The Foundry and/or The Foundry's licensors, including, but not limited to, the removal of the following (or any other copyright,
trademark or other proprietary rights notice included herein):

Katana™software © 2015 The Foundry Visionmongers Ltd. All Rights Reserved. Katana™ is a trademark of The Foundry Visionmongers
Ltd.

Sony Pictures Imageworks is a trademark of Sony Pictures Imageworks.

Mudbox™ is a trademark of Autodesk, Inc.

RenderMan ® is a registered trademark of Pixar.

In addition to those names set forth on this page, the names of other actual companies and products mentioned in this What's New In
Katana (including, but not limited to, those set forth below) may be the trademarks or service marks, or registered trademarks or service
marks, of their respective owners in the United States and/or other countries. No association with any company or product is intended or
inferred by the mention of its name in this document.

Linux ® is a registered trademark of Linus Torvalds.

The Foundry

5 Golden Square,

London,

W1F 7HT

Rev: 13 May 2015

Contents
Introduction 4

Geolib3: Overview 4
Interactivity and Performance 5

NewWorkflow Features 6
Graph State Variables 6
GafferThree 7
2D and 3D Update Modes 8
Python Tab 8
Lua OpScripts 9
Live Rendering 9

New APIs and Widgets 11
The Op API 11
Customizing Keyboard Shortcuts 11
SceneGraphViewWidget 12
Keyboard Shortcut Manager 12
LiveRenderAPI 13
Layered Menus in the Node Graph Tab 13

Geolib3: Into the Details 15
Main Differences Between Geolib2 and Geolib3 15

Important Changes 16
Nodes 16
APIs 18
Viewer Proxies 19
Attribute History 20
Handling of Font Preferences 20
Documentation 20
Changes in Third-Party Library Dependencies 20

Introduction
This document covers a technical overview of new features and important changes since Katana 1.x.

Katana 2.0 introducesmany changes, both at the core and at theUI level. These changes focus on several areas:

• Interactivity and performance - threading and data re-use

•More flexible and open APIs for Katana plug-ins - theOp API, newwidget types

•Workflow - improvements to multi-pass setup, lighting, and general UI tweaks

At the heart of these changes is a brand new implementation of the scene graph processing engine Katana uses to
build scene data: Geolib3.

NOTE: As the new implementation of the scene graph processing engine in Katana 2.0 constitute a
substantial change, pleasemake sure to thoroughly read the Katana ReleaseNotes and supporting
documentation, as your scenes and plug-insmay requiremodification.

Geolib3: Overview

Geolib3 draws on the breadth of experience frombuilding and using Geolib and Geolib2 in production. It is designed
to better take advantage of the resources now available withmodern hardware.

Themost noteworthy Geolib changes are the persistence and re-use of data while working with Katana’s node graph,
and the ability to strategically adapt behavior to make best use of CPU resource andmemory depending on the
situation. For example, we use one approach when working in theUI to ensure the interface stays responsive and
another during batch renders so they remain as efficient as possible.

NOTE: Formore details, see theGeolib3: Into theDetails section.

NOTE: Importantly, Geolib3 also expands the kinds of customnodes you can develop as a facility. See The
Op API section formore information.

Katana 2.0 leverages the increased functionality and performance offered by Geolib3 to provide you with a range of
improvements, optimizations, and new features. The following sections give a brief overview of these changes.

4

5

Interactivity and Performance

A key change for an artist using the Katana UI is that scene graph processing is now carried out asynchronously on
another thread. Thismeans far fewer blocks or stalls in theUI while working on a project. Additionally, wemake
much better use of previously computed data and therefore the parameter updates can bemuchmore responsive.
In many cases theViewer tab and other tabs now are updated during drag, rather than on pen-up, providing quicker
andmore accurate feedback.

In addition to increased interactivity, Geolib3’s architecture has also been designed to take advantage of modern
systemswithmultiple CPU cores. The existing FnScenegraphIterator interface, already used throughout
renderer plug-ins, has beenmade thread-safe and capable of being called efficiently and concurrently acrossmultiple
threads. Work is ongoing to add further performance gains fromboth the underlying Geolib3 runtime, individual
Ops, and the renderer plug-ins themselves.

| INTRODUCTION

6

NewWorkflow Features

Graph State Variables

Node types and UI elements have been added to support the setting and querying of new, node graph-level Graph
State Variables. These can be used to control which nodes in the node graph contribute to scene graph processing at
a particular time. This can greatly simplify multi-pass/layer workflows or any other tasks that might want to re-use
node setups with different inputs or outputs.

Graph State Variables can be set globally at the project level or locally at specific nodes in the node graph. Setting
values locally changes the value at that node and any node upstream.

NewNode Types Related to Graph State Variables
• VariableSet - Sets values for Graph State Variables locally at this point in the node graph. This affects the value at
this node and any node directly upstream.

• VariableSwitch - Switches which input is active depending on the value of a Graph State Variable.

• VariableEnabledGroup - Allows you to enable or bypass Group nodes depending on the value of a Graph State
Variable.

NewUI Elements to Manage Project-wide (global) Graph State Variables

Themainmenu bar provides awidget showing the currently active project-wideGraph State Variables and their
values. The variables shown here are the global variables set up in the Project Settings tab, not the local Graph
State Variables set using, for example, VariableSet nodes in the node graph.

A variables parameter has been added to the Project Settings tab for you to create, edit, and delete global Graph
State Variables.

NewUI Elements to Display Graph State Variables Based on the Currently Viewed
Node

AGraph State Variables button has been added to the header of parameters of nodes edited in the Parameters
tab. Clicking the button opens a pop-up widget that shows Graph State variables that are set up in Project Settings
(globals), as well as those that are active in the node graph branch to which the respective edited node belongs,
taking into account the currently viewed node (locals).

| NEW WORKFLOW FEATURES

7

Amenu itemnamedDim Nodes Not Contributing to Viewed Node has been added to the Editmenu of the
Node Graph tab. Thismenu can be used to dim nodes that are not contributing to the currently viewed node,
taking into account the states of Switch and VariableSwitch nodes.

NOTE: TheDim Nodes Not Contributing to Viewed Node feature does not take into account nodes
whose parameters are referenced in parameter expressions on nodes that are contributing to the
currently viewed node.

GafferThree

A newGaffer node type, named GafferThree, has been created to provide improved performancewhen dealing with
large numbers of lights in Katana projects. TheGafferThree implementation takes full advantage of the new scene
graph processing library Geolib3.

NOTE: The existing legacy Gaffer node type fromKatana 1.x is still present, and previously created
projects should continue to work, but it is advised to move to using the newGafferThree node typewhere
possible.

As well as performance, significant features of the GafferThree node type include the following:

• Lights, rigs, andmastermaterials can be created andmanaged underneath an arbitrary root location in the scene
graph. In the previous Gaffer node type, all lights would be created under /root/world/lgt. The new feature allows
the creation of lights under separate branches in the scene graph.

• Adoption of lights from the incoming scene. This allows a GafferThree node to edit thematerial, geometry, linking,
and transformation parameters, and also mute and solo state of lights, rigs, andmastermaterials created in
upstreamGafferThree nodes.

• Ability to add child lights, rigs, andmastermaterials under adopted rigs.

• Soloing a light in a GafferThree node affects downstream lights created by other GafferThree nodes.

• Parameter values of multiple selected items in theGafferThree object table can now be changed at once by
changing the parameter value for one of the selected items.

• Color swatches in theColor column of theGafferThree object table in the Parameters tab are shownwith filmlook
visualization/display transform turned on.

• The icon for a light in theGafferThree indicates itsmute state, which is consistent with the Scene Graph tab.

• The Linking tab provides fine-grained control over light and shadow linking. The tab presents two CEL widgets, on
and off, to specify locations for light linking, and a clearUnmatched checkbox that removes any locally set light
linking information on locations that are not matched by either of the CEL expressions. If a location ismatched by
both the on and the off CEL expressions, then on overrides off.

• The Link column in theGafferThree object table provides a read-only indication of the light and shadow linking
settings for each light.

• Callbacks can be registered for the following actions:

| NEW WORKFLOW FEATURES

8

• onGafferLightCreated - executed when a light is created.

• onGafferRigCreated - executed when a rig is created.

• onGafferMasterMaterialCreated - executed when amastermaterial is created.

• onGafferShaderSelected - executed when a shader is selected in theGafferThree object table.

• Colors are used for items in theGafferThree object table to indicatewhere a value has come from:

• Gray/white - default value.

• Yellow - locally set value.

• Blue - forced default value.

• Pink - value inherited from a referencedmastermaterial.

• Right-clicking a cell in the GafferThree object table shows a context menu with useful commands formanipulating
underlying parameters. The context menu in the Shader column adds a sub-menu for assigning a shader. Custom
columns can define their own context menu through the createContextMenu()method on their item delegate.

2D and 3D Update Modes

Katana’s 2D Render Mode and 3D Live Render Mode features have been replaced with 2D Render Mode, and
the application-wide 3D Update Mode respectively. Thesemodes govern the submission of parameter edits for
processing by the 2D rendering system and Geolib3.

• InManualmode, pending parameter edits are indicated by the Trigger 2D Update and Trigger 3D Update
buttons, and are committed by pressing these buttons.

• The 3D Update Mode button is displayed in themainmenu bar, as well as in the Scene Graph andMonitor tabs,
and applies to all edits of parameters of 3D nodes.

The 3D Update Mode replaces theDisable Scenegraph Updates button previously available in the Scene Graph
and Viewer tabs.

NOTE: As theManual 3D Update Mode currently defers all scene graph cooking in response to 3D
parameter edits, parameter interfaces that rely on scene graph data, such as GafferThree’s scene graph
view and shader selection interfaces, don't update correctly whilst certain parameter edits are pending.
Thismode is therefore only suggested for usewhile editing individual parameters in the Parameters tab
or whilemanipulating objects in theViewer tab.

Python Tab

The interactive Python tab has been enhanced to support:

• In-line code completion,

• Indentation of blocks of codewith the Tab key,

| NEW WORKFLOW FEATURES

9

• Un-indentation of blocks of codewith Shift+Tab,

• More comprehensive syntax highlighting, and

• Tooltips which display introspection data when the pointer is over the tab.

Preferences for the Python tab in thepython category of preferences have been revised:

• The commandFont and resultFont preferences have been removed, as it was not possible to change them from
the Preferences dialog. The appearance of text in the Python tab now depends on the application font
preference.

• Preferences have been added to control the auto-completion behavior (autoCompletionBehavior) as well as
whether or not to show help tooltips in the Python tab (showHelpTooltips).

Lua OpScripts

Due to the fact that the CPython GIL has performance implications whenmulti-threaded, Katana 2.0 introduces a
Lua-based OpScript node type that can be used instead of Python-based AttributeScript nodes.

It is recommended to useOpScript nodes wherever possible as they aremore performant and also have access to
the full Op API, allowing creation of scene graph locations, reading data frommultiple inputs, and other powerful
features.

Live Rendering

Live Render Controls

The Live Render Control tab of previous Katana releases has been replaced with several more Katana-native, more
flexible features. These include:

• A new column in the Scene Graph tab that allows you to toggle locations to generate Live Rendering updates
when their attributes change. This allowsmuch finer control over howmany updates are emitted to the renderer
plug-ins and which locations they come from.

• NewGenericAssign-based node types named <renderer>LiveRenderSettings that are used to set settings for
Live Rendering. These node types replace the renderer-specific parameters that were previously displayed in the
Live Render Control tab.

• The custom Live Rendering command buttons that were previously implemented in the renderer info plug-ins and
displayed in the Live Render Control tab have now been replaced with Qt menu actions which derive from the
newBaseLiveRenderAction Python class and are placed in the Live Rendermenu in theMonitor tab and also
in the Live Rendering sub-menu of theRendermainmenu. This allowsmuch greater flexibility in the
implementation of custom Live Render actions than before, particularly with access to the new LiveRenderAPI
functions.

• The option to use the same camera as theViewer tab has been replaced by a button at the bottomof theViewer
tab, named Live Render from Viewer Camera.

| NEW WORKFLOW FEATURES

10

Modifications of Interactive Render Filters (IRFs) during Live Rendering

In previous releases of Katana, Interactive Render Filters (IRFs) could not bemodified during a Live Render session.
For example, changes in the order of IRFs in the IRFs pop-up widget and changes to parameters of RenderFilter
nodes were not reflected in the Live Render.

IRFs have now been revised to be based on terminal Ops that are added to theGeolib3 client used in Live Rendering,
and are now taken into account during a Live Render session. Thismeans that it is possible to change the order of
RenderFilters or to change any of their parameters, and have those changes be reflected in the rendered image.

| NEW WORKFLOW FEATURES

11

New APIs and Widgets
Customization and the ability to integrate Katana into your pipeline has always been very important to Katana's
philosophy. Our design processes try to ensurewe provide extensibility through APIs and other suchmechanisms. In
Katana 1.x however, therewere certain limitations as to how you, as a facility, could extend the Katana node graph.
It was not possible for example, to write your own equivalent to theMerge node. In Katana 2.0 we are proud to
introduce the newOp API.

The Op API

TheOp API supersedes the SceneGraph Generator (SGG) and AttributeModifier Plug-in (AMP) APIs previously used
to write new types of nodes for Katana. Both of these APIs have their own limitations and were not used internally
within Katana. In Katana 2.0, theOp API, which we use to write all of the operators used by the core Katana nodes,
are now exposed directly to you.

Themain benefit of being able to use theOp API is that you can nowwrite Ops that can both see the incoming scene
graph frommultiple inputs, and create new locations. This can be great for:

• Crowds

• Instancing

• Advancedmerges

• Context-aware generators/importers

The code you need to write is also much simpler.

NOTE: Formore information on howOpswork and their development, see theOp API chapter of the
Katana Technical Guide.

Fear not though! To ease the transition to Katana 2.0, almost all existing SceneGraph Generators and Attribute
Modifier Plug-ins can still be used in Katana 2.0.

CustomOps can be sourced from theOps sub-directory of any KATANA_RESOURCES path.

Customizing Keyboard Shortcuts

Custom keyboard shortcuts for certain actions and key events in theUI can now be defined in a configuration file
stored in your Katana folder: $HOME/.katana/shortcuts.xml. The current assignments can be viewed in the
Keyboard Shortcuts tab.

| NEW APIS ANDWIDGETS

12

NOTE: Formore information on the shortcuts.xml file and its creation see theManaging Keyboard
Shortcuts and the shortcuts.xml File chapter of the Katana Technical Guide.

SceneGraphViewWidget

The new SceneGraphViewwidget is part of the Katana UI APIs and provides functionalities to implement custom
views of the scene graph. In Katana 2.0, this widget type is used in the Scene Graph tab and for the object table of
GafferThree nodes in the Parameters tab. You canmake use of the SceneGraphViewwidget in your own tab plug-
ins and SuperTools if you need to show a view of scene graph data.

Main features of the SceneGraphViewwidget include the following:

• View the scene graph produced at an arbitrary node.

• Customizable columns allowing you to view attributes at any scene graph location directly in the SceneGraphView.

• Ability to specify arbitrary scene graph locations to act as top-level locations fromwhich to view the currently
generated scene graph.

• Ability to customize context menus based on the scene graph location, column and/or current selection statewhen
they are opened.

• Ability to interrogate attributes at arbitrary locations in the scene graph and be notified through a callback when
they have changed.

• Support for drag-and-drop of items through custom event callbacks.

• Support for changing parameter values of multiple selected items in SceneGraphViewwidgets. When changing the
value in a cell whilemultiple rows are selected, the cells in other selected rows in the same column change as well.

• Support for indicating a difference between the final value of an attribute that corresponds to a cell in a
SceneGraphViewwidget and the value of a parameter that corresponds to the same cell, using an asterisk shown
next to the valuewithin a cell. Whenmoving the pointer over such a cell, a pop-up widget is shown, showing the
value of the attribute.

NOTE: You can find example tab plug-ins that demonstrate the use of the SceneGraphView class in:
$KATANA_HOME/plugins/Src/Resources/Examples/Tabs/PrototypeSceneGraphTab.py.

Keyboard Shortcut Manager

The UI4.App.KeyboardShortcutManager Pythonmodule has been added for registering action callbacks to
which keyboard shortcuts can be assigned, as well as key press callbacks and key release callbacks.

Presently, thismechanism only covers the following areas of the UI:

• The buttons next to themainmenu in Katana’smain application window:

• Shelf Actions

| NEW APIS ANDWIDGETS

13

• Flush Caches

• Toggle SceneGraph Implicit Resolvers

• Render Only Selected Objects

• Auto-key All

• The Scene Graph tab.

• TheGafferThree object table of GafferThree nodes that are edited in the Parameters tab.

• Custom tab plug-ins that derive from UI4.Tabs.BaseTab.

You can view the currently assigned keyboard shortcuts of actions and key events registered with the keyboard
shortcut manager in theKeyboard Shortcuts tab. Katana 2.0 allows customizing keyboard shortcuts for those
registered actions and key events (see Customizing Keyboard Shortcuts).

LiveRenderAPI

The new LiveRenderAPI Python package provides access to several functions that allow you to modify the
behavior of the Live Rendering system. It contains the following functions:

• SendCommand() - Sends custom Live Render commands to the renderer plug-in through the command socket.

• SendData() - Sends customdata updates to the renderer plug-in through the data socket.

• AppendTerminalOp() and RemoveTerminalOp() - Adds or removes additional terminal Ops to the Live
Rendering client allowing you to customize the scene graph data that is passed through to renderers.

• InsertTerminalOp() - Inserts a terminal Op into the Live Rendering client at a specified position index.

• GetTerminalOps() - Returns a list of tuples describing each terminal Op along with its Op args.

• ClearAllTerminalOps() - Removes all Live Rendering terminal Ops, including the defaults (specified in renderer
info plug-ins).

• RestoreDefaultTerminalOps() - Restores the default terminal Ops and removes all others.

• InsertTerminalOp() - Inserts a terminal Op into the Live Rendering client at a specified position index.

• GetTerminalOps() - Returns a list of tuples describing each terminal Op along with its Op args.

Layered Menus in the Node Graph Tab

The new LayeredMenuAPI allows you to define and register custommenus for theNode Graph tab that appear
and behave in the sameway as the built-in node creationmenu that is shownwhen pressing the Tab key. These
custommenus are named layered menus, as they appear in amenu layer on top of the nodes that make up the
node graph of a Katana project.

The entries that are shown for a layeredmenu can be customized with arbitrary text and a color per entry. When
entering text while a layeredmenu is shown, its entries are filtered based on the entered text, just like entries of the
node creationmenu are filtered when entering the name of a node type.

| NEW APIS ANDWIDGETS

14

When an entry from a layeredmenu is chosen, customPython code can be executed. One common use case for
layeredmenus is the ability to create and configure nodes of certain types based on a pre-defined or dynamic list of
menu entries for you to choose from.

An example script that registers a layeredmenu for theNode Graph tab, which shows the names of available
PRMan shaders and creates a PrmanShadingNode nodewith the chosen shader set on it when one of themenu
entries is chosen, can be found in the following location:
$KATANA_HOME/plugins/Src/Resources/Examples/UIPlugins/CustomLayeredMenuExample.py

| NEW APIS ANDWIDGETS

15

Geolib3: Into the Details
Geolib3 is Katana’s new deferred scene graph processing library. Geolib3 works at Katana’s core, processing and
generating scene graph locations on demand, to support large data sets. Geolib3 supports an asynchronous
processingmodel allowing theUI to remain responsivewhile scene graph data is being processed.

Operators (Ops) are the core processing unit of Geolib3. Ops can both generate new scene graph locations
(equivalent to Geolib2 SceneGraph Generators) and process incoming attributes (equivalent to Geolib2 Attribute
Modifiers).

Katana uses Clients to query attributes on specific locations when requested by theUI, for example to show
attribute values in theAttributes tab, or during rendering, when the scene graph is traversed and processed to
deliver data to the selected renderer.

Main Differences Between Geolib2 and Geolib3
• Geolib2 does not have a persistent scene graph datamodel. Conceptually, the entire SceneGraph is reconstructed
on every edit. Conversely, Geolib3’s OpTree is persistent, allowing for inter-cook scene data re-use.

• Geolib2’s scene graph is traversed using an implicit index mechanism, for instance getFirstChild()and
getNextSibling(), with scene graph location names determined by thename attribute. In Geolib3, child
locations are natively indexed by name. Therefore, in Geolib3 you can selectively cook a location, by name, without
cooking any peers. Consequently, thename attribute ismeaningless. This also implies that locations cannot
rename themselves, you can rename children however.

• Geolib2 is not amenable to either asynchronous or concurrent evaluation. Geolib3 supports both of thesemodes
of operation.

NOTE: Formore details on the above topics, see theGraph State Variables chapter of the Katana User
Guide and the Porting Plug-ins,Op API, and NodeTypeBuilder chapters of the Katana Technical Guide.

| GEOLIB3: INTO THEDETAILS

16

Important Changes

Nodes

AttributeScript
• GetAttr("name") no longer accesses the location name, since location names are no longer simple string
attributes. You should use GetName() instead.

• SetAttr("name", <newName>) no longer renames a location. Locations are explicitly named on creation in
Katana 2.x. The Renamenode or OpScript nodes should be used instead.

• GetAttr(<attrName>, inherit=True) now consistently returns an attribute from the input to the
AttributeScript node, even when queried at other locations. In previous versions, in some situations, the output of
the AttributeScript nodewould be considered.

• GetChildNames(atLocation=<locationPath>) causes the script to abort if the requested location is not an
ancestor of the location the AttributeScript is operating upon. The script restarts from the beginning once the
location is cooked. In most cases this is inconsequential, but can have an impact if the script is dealing with external
resources (database, filesystem, and so on).

• Functions which usually return a ScenegraphAttr, for instance, GetAttr(<attrName>, asAttr=True)now
take the optional asFnAttribute parameter (default: False) to return the newer FnAttribute type. There are
a number of method differences between FnAttribute and the old PyScenegraphAttr type, including the
following:

• FnAttribute.Attribute has no type()method, instead use isinstance(attr,
FnAttribute.<Type>Attribute)

• FnAttribute.GroupAttribute has nomethod childNames(), instead use childList()

NOTE: AttributeScripts can now use FnAttribute instead of ScenegraphAttr, formore information
see the ScenegraphAttr Porting Guide of the Katana Technical Guide.

• The followingmethods to resolve and query information about asset IDs are now available in AttributeScript nodes
through the Utilmodule:

DefaultAssetPlugin.isAssetId(string)
DefaultAssetPlugin.containsAssetId(string)
DefaultAssetPlugin.resolveAsset(assetId)
DefaultAssetPlugin.resolvePath(path, frame)
DefaultAssetPlugin.getUniqueScenegraphLocationFromAssetId(assetId, includeVersion)
DefaultAssetPlugin.getRelatedAssetId(assetId, relation)

| IMPORTANT CHANGES

17

• In order to support the new threadingmodels in Katana 2.x and avoid UI blocking, AttributeScripts are now
evaluated by a separate pool of Python interpreters. This is to mitigate the limitations the CPython GIL imposes.
Consequently, the following considerations should be taken into account:

• Setup scripts can be runmore than once, but only once per interpreter in the pool.

• Child locationsmay not run in the same interpreter as parent locations.

It is important that any codemaking use of the usermodule does not assume that it is the same instance as was
present when the script ran in another location.

• As AttributeScripts are now run through an interpreter pool (see above), simple AttributeScripts now have a greater
performance impact than in previous Katana versions (due to the setup/IPC overhead). As such, it’s recommended
to useOpScript for anything that isn’t using pymath or any heavy lifting through bindings to third-party libraries, as
it doesn’t include the same overheads.

NOTE: Formore information on Python interpreter processes, see the Python Processes and Geolib3
chapter of the Katana Technical Guide.

Gaffer
• The existing legacy Gaffer node type fromKatana 1.x is still present, and previously created projects should
continue to work, but it is advisable to move to using the newGafferThree node typewhere possible.

• Gaffer nodes from 1.x projects are updated to 2.0-compatible Gaffer nodes by an update script.

• Theway that Sky Dome items are implemented in classic Gaffer has changed. Instead of an arnoldSurfaceShader
of type skydome_light on the item’sMaterial node, materials on Sky Domes are now resolved internally in Gaffer.

Alembic_In

The Alembic_In node type now supports auseOnlyShutterOpenCloseTimes parameter that forces the Alembic
cache to only use the time samples corresponding to shutter open and close times when themaxTimeSamples
option is set to 2.
The parameter is available in the advanced section, in the Parameters tab.

NOTE: TheuseOnlyShutterOpenCloseTimes argument is also supported by the AlembicIn Op.

VelocityApply

The following parameters have been added to VelocityApply nodes:

• velocityAttribute - The name of the attribute representing the velocity information to be used by the node. If the
parameter is not set, the following attributes are checked:

• geometry.point.V

| IMPORTANT CHANGES

18

• geometry.point.v

• geometry.arbitrary.v

• velocityUnits - Units to be used to interpret the values stored in the velocity attribute, with the following options:

• units / second

• units / frame

ScenegraphGeneratorSetup
• The Alembic_In SceneGraph Generator has been removed, having been superseded by the AlembicIn Op.

• The signature of the createProxyAttr()method of BaseProxyLoader has beenmodified to return a
GroupAttribute that sets up the execution of an Op instead of a SceneGraph Generator. This Op is specified by the
child opType StringAttribute and optional child opArgs GroupAttribute. Proxy resolution using a custom Scene
Graph Generator is supported by setting the opType as ScenegraphGeneratorHost and passing the name of
the generator as the StringAttribute opArgs.generatorType, and the optional args in GroupAttribute
opArgs.args.

APIs
• AttributeModifier Plug-ins (AMPs) and SceneGraph Generator plug-ins (SGGs) need to be recompiled. Forminor
header/source changes, see the Porting Plug-ins chapter of the Katana Technical Guide.

• AMPs are no longer resolved with an AttributeModifierResolve node. They are resolved with an OpResolve node.

• AMPs can no longer rename locations (through setAttribute("name", "newName") or otherwise). Locations
are explicitly named on creation in Katana 2.x. The Renamenode or OpScript nodes should be used instead (or the
coreOp API).

• Thename attribute is no longer used to determine the name of a scene graph location. Querying the attribute only
returns any data set by other calls to setAttribute()/SetAttr(), and not the name of the location, which
means that name is just like any other attribute. In AMPs, the current location’s name can be queried with
AttributeModifierInput::getName(), and in AttributeScript, with GetName().

• Python-based AssetAPI plug-ins are known to be a performance bottleneck due to the overhead of executing
Python code in separate processes. This is particularly prominent with the high numbers of calls to isAssetId()
that are executed duringmaterial resolve on shader parameters. It is therefore advisable to use C-based
implementations where possible.

NOTE: Formore information on Python interpreter processes, see the Python Processes and Geolib3
chapter of the Katana Technical Guide.

• Python-based Render Location plug-ins have been removed due to the inherent performance bottleneck of
executing Python codewhen evaluating /root. This is a special case that should be kept as lightweight as possible,
due to the frequency of evaluation in interactive sessions. The core plug-ins have been replaced by C++

| IMPORTANT CHANGES

19

RenderOutputLocation plug-ins that are shipped as source and can be found in
plugins/Src/RenderOutputLocations.

• Across the board, ScenegraphAttr has been replaced by FnAttribute, with a new, optimised implementation.

• FnAttribute::GroupBuilder::build() has beenmodified to support an optional builderMode parameter
to define if the content of the builder has to be retained or flushed when the resulting GroupAttribute is created.
The builderMode parameter has type BuilderBuildMode and supports only the values BuildAndFlush and
BuildAndRetain:

GroupAttribute build(BuilderBuildMode builderMode = BuildAndFlush);

Notice that, in Katana 2.0, BuildAndFlush is the default value for the builderMode parameter, so
GroupBuilder::build() flushes the content of the builder by default.

The same behavior applies in the Python and LUA bindings for FnAttribute::GroupBuilder.

Calling GroupBuilder::build() on the same GroupBuildermultiple times then results in a valid
GroupAttribute being returned only for the first invocation while, for the following ones, an invalid
FnAttribute is returned.

Instead of calling FnAttribute::GroupBuilder::build()multiple times, the GroupAttribute returned by
build() can be stored in a variable and used in different places in the code. Alternatively the BuildAndRetain
value for the builderMode parameter can be used.

Viewer Proxies

Ops can now be used to define viewer proxies on scene graph locations. Twomain attribute conventions are
currently supported:

• ViewerProxyLoader (legacy mode) - An Alembic cache can be loaded through the default ViewerProxyLoader,
setting theproxies.viewer string attribute on the target location.

•Op-based - Ops can be chained to create the geometry to be used as a proxy by adding group child attributes to
theproxies.viewer group attribute on the target location. Each child group attribute represents an Op and its
content must contain:

• a string attribute named opType defining the type of theOp to be used.

• a group attribute named opArgs containing attributes defining theOp arguments.

Here's an example of the attributes hierarchy using two Ops to generate the proxy geometry:

Location
/root/world/geo/group

Attributes:
...
proxies

viewer
proxyOp_1

opType 'AlembicIn' (StringAttribute)

| IMPORTANT CHANGES

20

opArgs
fileName '/tmp/myProxy.abc' (StringAttribute)

proxyOp_2
opType 'Messer' (StringAttribute)
opArgs

displacement 0.23 (DoubleAttribute)
...

Proxy caches are considered animated by default. Static proxy caches can be defined by setting theproxies.static
IntAttribute to 1.

Attribute History

There is a new API for querying Attribute History fromPython. You can find it in the
UI4.Util.AttributeHistorymodule.

Attribute History can be queried synchronously, in which case theUI blocks until the result is computed and
returned, or asynchronously if you provide a callback to run when the computation is complete.

Handling of Font Preferences

Katana 2.0 uses an application-wideQt style sheet to apply font preferences to Qt widgets. Customwidgets that use
font metrics beforewidgets are shown need to bemodified to add QWidget.ensurePolished() calls before
working with QtGui.QFontMetrics instances.

Documentation

TheHelp tab has been deprecated in favor of serving HTML documentation in your web browser. The
documentation is now generated by Sphinx, which features a number of niceties, such as searching and syntax
highlighting.

The Examples page of the previous HTML documentation has been replaced by a dedicated Example Projects tab.
The tab can be launched through Katana’smainmenu bar, by navigating toHelp > Example Projects.

Changes in Third-Party Library Dependencies

The changes in the third-party library dependencies are the following:

• Alembic 1.5.3 - provides better support for theOgawa data storage backend.

•OpenColorIO - Katana previously shipped with a build of OpenColorIO that used FnOpenColorIO namespaced
symbols, but theOpenColorIO libraries were not named accordingly (with the Python bindings

| IMPORTANT CHANGES

21

libOpenColorIO.so and PyOpenColorIO.so). This caused problemswith using a custom facility-installed
OpenColorIO in parallel with the Katana libraries. This has been updated so that the libraries shipped with Katana
are now Fn-prefixed too (libFnOpenColorIO.so and FnPyOpenColorIO.so). Using the Python bindings is still
possible through import FnPyOpenColorIO and any code using PyOpenColorIO needs updating to either use
FnPyOpenColorIO, or a facility-installed OpenColorIO could be used instead of the one that ships with Katana.

• Python 2.7.3 - upgraded to match the VFX PlatformCY2014 specification

•Qt 4.8.5 - upgraded to match the VFX PlatformCY2014 specification

| IMPORTANT CHANGES

http://www.vfxplatform.com/
http://www.vfxplatform.com/

	Cover

	Contents

	Introduction
	Geolib3: Overview
	Interactivity and Performance

	New Workflow Features
	Graph State Variables
	GafferThree
	2D and 3D Update Modes
	Python Tab
	Lua OpScripts
	Live Rendering

	New APIs and Widgets
	The Op API
	Customizing Keyboard Shortcuts
	SceneGraphView Widget
	Keyboard Shortcut Manager
	LiveRenderAPI
	Layered Menus in the Node Graph Tab

	Geolib3: Into the Details
	Main Differences Between Geolib2 and Geolib3

	Important Changes
	Nodes
	APIs
	Viewer Proxies
	Attribute History
	Handling of Font Preferences
	Documentation
	Changes in Third-Party Library Dependencies

